1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
| from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt data = load_boston() X = data['data'] Y = data['target'] train_X,test_X,train_y,test_y = train_test_split(X,y,test_size = 0.3)
rfr = RandomForestRegressor() rfr.fit(train_X,train_y) train_predicts = rfr.predict(train_X) test_predicts = rfr.predict(test_X)
mean_squared_error(train_predicts,train_y) mean_squared_error(test_predicts,test_y)
error_trains = [] error_tests = [] for i in range(10,200,10): rfr = RandomForestRegressor(n_estimators = i,random_state = 90) rfr.fit(train_X,train_y) train_predicts = rfr.predict(train_X) test_predicts = rfr.predict(test_X) error_trains.append(mean_squared_error(train_predicts,train_y)) mean_squared_error.append((test_predicts,test_y))
x = list(range(10,200,10)) plt.plot(x,error_trains,'--',label = 'train') plt.plot(x,error_tests,'o',label = 'test') plt.xlabel('n_estimators') plt.ylabel('MSE') plt.legend() plt.show()
|