代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
data = load_boston()
X = data['data']
Y = data['target']
train_X,test_X,train_y,test_y = train_test_split(X,y,test_size = 0.3) # 如果想固定划分结果,用种子

rfr = RandomForestRegressor()
rfr.fit(train_X,train_y)
train_predicts = rfr.predict(train_X)
test_predicts = rfr.predict(test_X)

mean_squared_error(train_predicts,train_y)
mean_squared_error(test_predicts,test_y)

# 调节参数,决策树棵数
error_trains = []
error_tests = []
for i in range(10,200,10):
# 修改n_estimators,也就是决策树棵数,并确定随机种子
rfr = RandomForestRegressor(n_estimators = i,random_state = 90) # 控制种子,保证变量唯一
rfr.fit(train_X,train_y)
train_predicts = rfr.predict(train_X)
test_predicts = rfr.predict(test_X)
error_trains.append(mean_squared_error(train_predicts,train_y))
mean_squared_error.append((test_predicts,test_y))

# 绘制调参图
x = list(range(10,200,10))
plt.plot(x,error_trains,'--',label = 'train')
plt.plot(x,error_tests,'o',label = 'test')
plt.xlabel('n_estimators')
plt.ylabel('MSE')
plt.legend()
plt.show()