1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
|
from sklearn.datasets import load_iris import numpy as np data = load_iris()
x = data['data'] y = data['target']
x = x[50:] y = y[50:]
y[:50] = 0 y[50:] = 1
from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2,random_state = 0)
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(x_train,y_train)
y_train_pred = lr.predict(x_train) y_test_pred = lr.predict(x_test) y_train_pred y_test_pred
from sklearn.metrics import accuracy_score accuracy_score(y_train,y_train_pred) accuracy_score(y_test,y_test_pred)
from sklearn.metrics import confusion_matrix cm1 = confusion_matrix(y_train,y_train_pred) P1 = cm1[0,0]/(cm1[0,0] + cm1[1,0]) R1 = cm1[0,0]/(cm1[0,0] + cm1[0,1]) F11 = 2/(1/P1 + 1/R1) cm2 = confusion_matrix(y_test,y_test_pred) P2 = cm2[0,0]/(cm2[0,0] + cm2[1,0]) R2 = cm2[0,0]/(cm2[0,0] + cm2[0,1]) F12 = 2/(1/P1 + 1/R1)
from sklearn.metrics import roc_auc_score,roc_curve,auc
y_p = lr.predict_proba(x_train)[:,1] fpr,tpr,thresholds = roc_curve(y_train,y_p)
roc_auc = auc(fpr,tpr)
import matplotlib.pyplot as plt plt.subplots(figsize = (8,5)) plt.plot(fpr,tpr,color = 'darkorange',lw = 2,label = 'ROC curve(area = %0.4f)'%roc_auc) plt.plot([0,1],[0,1],color = 'navy',linestyle = '--') plt.xlim([0.0,1.0]) plt.ylim([0.0,1.05]) plt.xlabel('FPR') plt.ylabel('TPR') plt.title('Train ROC Curve') plt.legend(loc = 'lower right') plt.show()
|